NOIp Senior Simulated Contest

zhzh2001

verified by axs7384

题目名称	三角函数	牛奶测量	质数哈希
目录	trifunc	measurement	primehash
可执行文件名	trifunc	measurement	primehash
输入文件名	trifunc.in	measurement.in	primehash.in
输出文件名	trifunc.out	measurement.out	primehash.out
时间限制	1s	1-2s	0.5s
空间限制	256MB	256MB	256MB
测试点数量	20	20	25
测试点分数	5	5	4
比较方式	全文	全文	SPJ
部分分	无	无	有

提交源程序文件名

对于 C++	语言	trifunc.cpp	measurement.cpp	primehash.cpp
对于 C	语言	trifunc.c	measurement.c	primehash.c
对于 Pascal	语言	trifunc.pas	measurement.pas	primehash.pas

编译选项

对于 C++	语言	-02 -std=gnu++11	-02 -std=gnu++11	-02 -std=gnu++11
对于 C	语言	-02	-02	-02
对于 Pascal	语言	-02	-02	-02

注意事项:

- 1. 注意编译选项,避免未定义行为或编译错误。
- 2. 代码长度限制为**25KB**。
- 3. 注意代码常数和 I/O 造成的效率影响。

1 三角函数 (trifunc.c/cpp/pas)

1.1 题目描述

已知

$$\cos\alpha = \frac{a}{b}, \alpha \in [0,\pi]$$

求

$$\sum_{i=1}^{n} b^{i} \times \sin i\alpha$$

四舍五人 后对 $10^9 + 7$ 取模的值。

1.2 输入格式 (trifunc.in)

一行三个整数 a, b, n。

1.3 输出格式 (trifunc.out)

一行一个**非负** 整数,表示答案四舍五入后对 $10^9 + 7$ 取模的值。

1.4 样例

1.4.1 样例输入 1

4 5 3

1.4.2 样例输出 1

144

1.4.3 样例解释 1

$$\alpha = \arccos \frac{4}{5} \approx 0.64350110879328426$$

i	$\sin i\alpha$	$b^i \times \sin i\alpha$
1	0.6	3
2	0.96	24
3	0.936	117

1.4.4 样例 2

见选手目录下的trifunc/trifunc2.in 与trifunc/trifunc2.ans。

1.5 数据范围和约定

测试点	a	b	n
1	0		$\leq 10^{6}$
2			$\leq 10^{18}$
3	=0		$\leq 10^{1,000}$
4			
5	= 4	= 5	≤ 20
6	=5	= 13	
7	= 7	= 25	≤ 12
8		≤ 15	
9			≤ 100
10			$\leq 10^{6}$
11			
12			$\leq 10^9$
13			$\leq 10^{18}$
14			<u> </u>
15			$\leq 10^{1,000}$
16			
17			$\leq 10^{20,000}$
18			$\leq 10^{50,000}$
19			$\leq 10^{200,000}$
20			

对于 100% 的数据, $0 \le |a| \le b \le 10^9, b > 0, 1 \le n \le 10^{500,000}, \sin \alpha \in \mathbb{Q}$ 。

1.6 提示

在 Pascal/C/C++ 中, 三角函数均采用弧度制, 转换关系为

$$\pi = 180^{\circ}$$

 \arcsin 和 \arccos 为 \sin 和 \cos 的反函数,定义域为 [-1,1]。

在 Pascal 中, sin 和 cos 为标准函数, 而 arcsin 和 arccos 需要使用math 库。

在 C/C++ 中, arcsin 为asin, arccos 为acos, 这些函数都定义在math.h/cmath 中。

2 牛奶测量 (measurement.c/cpp/pas)

2.1 题目描述

最初,农夫约翰的每头奶牛每天生产 G 加仑的牛奶。由于随着时间的推移,奶牛的产奶量可能会发生变化,农夫约翰决定定期对奶牛的产奶量进行测量,并将其记录在日志中。

他的日志中的记录如下:

35 1234 -2

 $14\ 2345\ +3$

第一个条目表明:在第 35 天,1234 号奶牛的产奶量比上次测量时降低了 2 加仑。

第二个条目表明: 在第 14 天, 2345 号奶牛的产奶量比上次测量时增加了 3 加仑。

农夫约翰在任何一天内最多只有做<u>一次</u>测量的时间。不幸的是,约翰有点杂乱无章,他不一定按照时间顺序记下测量结果。为了保持奶牛的产奶动力,农夫约翰自豪地在谷仓的墙上展示了目前产奶量最高的奶牛的照片(如果有若干头奶牛的产奶量最高,他就会展示**所有的照片**)。请求出哪些天约翰需要调整所展示的照片。

请注意,农夫约翰有一大群奶牛。所以尽管日志中记录了一些奶牛改变了产奶量,但仍然还有很多奶牛的产奶量保持在 G 加仑。

2.2 输入格式 (measurement.in)

第一行包含两个整数 N 和 G,分别表示日志条数和初始产奶量。

接下来 N 行,每行为一次测量,按照上面的格式,分别表示日期、奶牛编号和产量的变化值。

2.3 输出格式 (measurement.out)

第一行一个整数 K 表示调整照片的次数。

接下来 K 行,每行一个整数,表示调整照片的日期,按照升序输出。

2.4 样例

2.4.1 样例输入 1

4 10

7 3 +3

4 2 -1

9 3 -1

1 1 +2

2.4.2 样例输出 1

3

1

7

9

2.4.3 样例解释 1

在第1天,1号奶牛的产量提高为12加仑,最高产量变为1号。

在第4天,2号奶牛的产量降低为9加仑,最高产量仍为1号。

在第7天,3号奶牛的产量提高为13加仑,最高产量变为3号。

在第9天,3号奶牛的产量降低为12加仑,最高产量变为1、3号并列。

2.4.4 样例 2

见选手目录下的measurement/measurement2.in 与measurement/measurement2.ans。

2.5 数据范围和约定

	$N \leq$	特殊性质
	11 =	
1		每次测量同一只奶牛
2		每次测量的奶牛都不同
3		产量只增加
4		产量只减少
5		产量除一次减少外都增加
6	40	
7	750	
8	2,000	
9	6,000	
10	10,000	
11	20, 000	
12	30,000	
13	50,000	
14	70,000	
15	90,000	
16	100,000	
17	200, 000	
18	200,000	
19		
20		

对于 100% 的数据, $1 \le N \le 300,000$,日期、奶牛编号在 $1\dots 10^9$ 的范围内,日期互不相同,产量总在 $0\dots 10^9$ 范围内。

3 质数哈希 (primehash.c/cpp/pas)

3.1 题目描述

求整数区间 l...r 间的质数表的哈希值。 对于有序数列 A[1...n],定义哈希函数为

$$h(A) = \sum_{i=1}^{n} A_i \times p^{n-i} \mod (10^9 + 7)$$

其中 p = 999, 999, 937。

3.2 输入格式 (primehash.in)

一行两个整数 l, r。

3.3 输出格式 (primehash.out)

两个整数,分别表示质数个数和哈希值。

3.4 样例

3.4.1 样例输入 1

10 15

3.4.2 样例输出 1

2 999999250

3.4.3 样例解释 1

 $A = \{11, 13\}, h(A) = (11 \times 999, 999, 937 + 13) \mod 1,000,000,007 = 999,999,250$

3.4.4 样例 2

见选手目录下的primehash/primehash2.in 与primehash/primehash2.ans。

3.5 数据范围和约定

测试点	$r-l \le$	$r \leq$
1	0	
2	1,000	
3	10^{5}	
4	3×10^{5}	
5	10^{6}	
6	3×10^{6}	
7	10^{7}	
8	3×10^7	
9	108	
10		1,000
11		10^{6}
12		3×10^{6}
13		10^{7}
14		3×10^7
15		108
16		3×10^{8}
17		10^{9}
18		3×10^{9}
19		10^{10}
20		3×10^{10}
21		5×10^{10}
22		8×10^{10}
23		
24		10^{11}
25		

对于 100% 的数据, $1 \le l \le r \le 10^{11}$ 。

3.6 部分分

如果质数个数正确,而哈希值错误,可以得到测试点75%的分数,即3分。